Writing a smart pointer value_ptr

suggest change

A value_ptr is a smart pointer that behaves like a value. When copied, it copies its contents. When created, it creates its contents.

// Like std::default_delete:
template<class T>
struct default_copier {
  // a copier must handle a null T const* in and return null:
  T* operator()(T const* tin)const {
    if (!tin) return nullptr;
    return new T(*tin);
  }
  void operator()(void* dest, T const* tin)const {
    if (!tin) return;
    return new(dest) T(*tin);
  }
};
// tag class to handle empty case:
struct empty_ptr_t {};
constexpr empty_ptr_t empty_ptr{};
// the value pointer type itself:
template<class T, class Copier=default_copier<T>, class Deleter=std::default_delete<T>,
  class Base=std::unique_ptr<T, Deleter>
>
struct value_ptr:Base, private Copier {
  using copier_type=Copier;
  // also typedefs from unique_ptr

  using Base::Base;

  value_ptr( T const& t ):
    Base( std::make_unique<T>(t) ),
    Copier()
  {}
  value_ptr( T && t ):
    Base( std::make_unique<T>(std::move(t)) ),
    Copier()
  {}
  // almost-never-empty:
      value_ptr():
    Base( std::make_unique<T>() ),
    Copier()
  {}
  value_ptr( empty_ptr_t ) {}

  value_ptr( Base b, Copier c={} ):
    Base(std::move(b)),
    Copier(std::move(c))
  {}

  Copier const& get_copier() const {
    return *this;
  }

  value_ptr clone() const {
    return {
      Base(
        get_copier()(this->get()),
        this->get_deleter()
      ),
      get_copier()
    };
  }
  value_ptr(value_ptr&&)=default;
  value_ptr& operator=(value_ptr&&)=default;

  value_ptr(value_ptr const& o):value_ptr(o.clone()) {}
  value_ptr& operator=(value_ptr const&o) {
    if (o && *this) {
      // if we are both non-null, assign contents:
      **this = *o;
    } else {
      // otherwise, assign a clone (which could itself be null):
      *this = o.clone();
    }
    return *this;
  }
  value_ptr& operator=( T const& t ) {
    if (*this) {
      **this = t;
    } else {
      *this = value_ptr(t);
    }
    return *this;
  }
  value_ptr& operator=( T && t ) {
    if (*this) {
      **this = std::move(t);
    } else {
      *this = value_ptr(std::move(t));
    }
    return *this;
  }
  T& get() { return **this; }
  T const& get() const { return **this; }
  T* get_pointer() {
    if (!*this) return nullptr;
    return std::addressof(get());
  }
  T const* get_pointer() const {
    if (!*this) return nullptr;
    return std::addressof(get());
  }
  // operator-> from unique_ptr
};
template<class T, class...Args>
value_ptr<T> make_value_ptr( Args&&... args ) {
  return {std::make_unique<T>(std::forward<Args>(args)...)};
}

This particular value_ptr is only empty if you construct it with empty_ptr_t or if you move from it. It exposes the fact it is a unique_ptr, so explicit operator bool() const works on it. .get() has been changed to return a reference (as it is almost never empty), and .get_pointer() returns a pointer instead.

This smart pointer can be useful for pImpl cases, where we want value-semantics but we also don’t want to expose the contents of the pImpl outside of the implementation file.

With a non-default Copier, it can even handle virtual base classes that know how to produce instances of their derived and turn them into value-types.

Feedback about page:

Feedback:
Optional: your email if you want me to get back to you:



Table Of Contents