Trim bezier curve.
suggest changeThis example show you how to trim a bezier.
The function trimBezier trims the ends off of the curve returning the curve fromPos
to toPos
. fromPos
and toPos
are in the range 0 to 1 inclusive, It can trim quadratic and cubic curves. The curve type is determined by the last x argument x4
. If not undefined
or null
then it assumes the curve is cubic else the curve is a quadratic
The trimmed curve is returned as an array of points. 6 points for quadratic curves and 8 for cubic curves.
Example Usage
Trimming a quadratic curve.
var p1 = {x : 10 , y : 100};
var p2 = {x : 100, y : 200};
var p3 = {x : 200, y : 0};
var newCurve = splitCurveAt(0.25, 0.75, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y)
var i = 0;
var p = newCurve
// Draw the trimmed curve
// Assumes ctx is canvas 2d context
ctx.lineWidth = 1;
ctx.strokeStyle = "black";
ctx.beginPath();
ctx.moveTo(p[i++],p[i++]);
ctx.quadraticCurveTo(p[i++], p[i++], p[i++], p[i++]);
ctx.stroke();
Trimming a cubic curve.
var p1 = {x : 10 , y : 100};
var p2 = {x : 100, y : 200};
var p3 = {x : 200, y : 0};
var p4 = {x : 300, y : 100};
var newCurve = splitCurveAt(0.25, 0.75, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, p4.x, p4.y)
var i = 0;
var p = newCurve
// Draw the trimmed curve
// Assumes ctx is canvas 2d context
ctx.lineWidth = 1;
ctx.strokeStyle = "black";
ctx.beginPath();
ctx.moveTo(p[i++],p[i++]);
ctx.bezierCurveTo(p[i++], p[i++], p[i++], p[i++], p[i++], p[i++]);
ctx.stroke();
Example Function
trimBezier = function(fromPos, toPos, x1, y1, x2, y2, x3, y3, [x4, y4])
Note: Arguments inside [x4, y4] are optional.
Note: This function requires the function in the example Split Bezier Curves At in this section
var trimBezier = function(fromPos, toPos, x1, y1, x2, y2, x3, y3, x4, y4){
var quad, i, s, retBez;
quad = false;
if(x4 === undefined || x4 === null){
quad = true; // this is a quadratic bezier
}
if(fromPos > toPos){ // swap is from is after to
i = fromPos;
fromPos = toPos
toPos = i;
}
// clamp to on the curve
toPos = toPos <= 0 ? 0 : toPos >= 1 ? 1 : toPos;
fromPos = fromPos <= 0 ? 0 : fromPos >= 1 ? 1 : fromPos;
if(toPos === fromPos){
s = splitBezierAt(toPos, x1, y1, x2, y2, x3, y3, x4, y4);
i = quad ? 4 : 6;
retBez = [s[i], s[i+1], s[i], s[i+1], s[i], s[i+1]];
if(!quad){
retBez.push(s[i], s[i+1]);
}
return retBez;
}
if(toPos === 1 && fromPos === 0){ // no trimming required
retBez = [x1, y1, x2, y2, x3, y3]; // return original bezier
if(!quad){
retBez.push(x4, y4);
}
return retBez;
}
if(fromPos === 0){
if(toPos < 1){
s = splitBezierAt(toPos, x1, y1, x2, y2, x3, y3, x4, y4);
i = 0;
retBez = [s[i++], s[i++], s[i++], s[i++], s[i++], s[i++]];
if(!quad){
retBez.push(s[i++], s[i++]);
}
}
return retBez;
}
if(toPos === 1){
if(fromPos < 1){
s = splitBezierAt(toPos, x1, y1, x2, y2, x3, y3, x4, y4);
i = quad ? 4 : 6;
retBez = [s[i++], s[i++], s[i++], s[i++], s[i++], s[i++]];
if(!quad){
retBez.push(s[i++], s[i++]);
}
}
return retBez;
}
s = splitBezierAt(fromPos, x1, y1, x2, y2, x3, y3, x4, y4);
if(quad){
i = 4;
toPos = (toPos - fromPos) / (1 - fromPos);
s = splitBezierAt(toPos, s[i++], s[i++], s[i++], s[i++], s[i++], s[i++]);
i = 0;
retBez = [s[i++], s[i++], s[i++], s[i++], s[i++], s[i++]];
return retBez;
}
i = 6;
toPos = (toPos - fromPos) / (1 - fromPos);
s = splitBezierAt(toPos, s[i++], s[i++], s[i++], s[i++], s[i++], s[i++], s[i++], s[i++]);
i = 0;
retBez = [s[i++], s[i++], s[i++], s[i++], s[i++], s[i++], s[i++], s[i++]];
return retBez;
}
<!—- Please note anyone editing this example that it is dependent on the example Split Bezier Curves At. If you make changes to either example please ensure that they remain compatible. If you remove the dependent please provide a replacement function or remove this as well (and may you be infested with bugs) —–!>